Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа г. Светогорска»

Приложение к основной образовательной программе среднего общего образования, утверждённой приказом № 01-12/324 от 31.08.2021 г. Срок реализации программы 1 год.

Рабочая программа учебного предмета «ХИМИЯ»

для учащихся 10 класс (физмат)

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по химии основной школы предназначена для учащихся 10 классов МБОУ «СОШ г. Светогорска» и составлена на основе Фундаментального ядра содержания среднего полного общего образования, требований к результатам ООО, представленных в Федеральном государственном стандарте среднего общего образования 2 поколения, Основной образовательной программы МБОУ «СОШ г. Светогорска» и авторской программы О.С.Габриеляна. Реализуется через УМК О.С. Габриеляна и рассчитана на 68учебных часа. В ней предусмотрено проведение 13 лабораторных и 2 практических работ, программа ориентирована на работу по учебнику и рабочей тетради.

Габриелян О.С.Химия 10 класс.Базовый уровень: учебник / О.С.Габриелян, И.Г.Остроумов, С.Ю.Пономарев.-7-е изд.,стереотип. - М.:Дрофа.,2019.-191,[1]с.:ил.

Данная программа имеет гриф «Допущено Департаментом образовательных программ и стандартов общего образования Министерства образования и науки РФ».

ПРОГРАММА ВКЛЮЧАЕТ З РАЗДЕЛА:

- планируемые результаты освоения учебного предмета.
- основное содержание учебного предмета.
- тематическое планирование с указанием количества часов на освоение учебного предмета

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА.

Химия в старшей школе изучается с 10 по 11класс. Количество учебных часов в 10 классе (физико-математическом профиле) 68. ч (2ч в неделю).

80 % учебного времени отводится на обязательную часть изучения содержания курса, 20 % - на часть, формируемую участниками образовательного процесса, реализуемую в рамках нелинейного расписания. Формы занятий: практикумы, лабораторные работы, проекты, экскурсии, исследования.

Изучение химии в старшей школе обуславливает достижение, следующих личностных результатов:

ЛИЧНОСТНЫЕ

- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков.
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение

оказывать первую помощь;

- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности.

МЕТАПРЕДМЕТНЫЕ

Регулятивные универсальные учебные действия

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выстраивать индивидуальную образовательную траекторию, учитывая
- ограничения со стороны других участников и ресурсные ограничения; менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в

разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);

– развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств.

ПРЕДМЕТНЫЕ

Предметными результатами освоения выпускниками средней школы программы по химии являются:

- 1) сформированность знаний о химической картине мира как органической части его целостной естественнонаучной картины;
- 2) знание методов научного познания для объяснения химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;
- 3) приобретение опыта использования методов химической науки и проведения несложных химических экспериментов;
- 4) анализ, синтез, обобщение, конкретизация, сравнение в процессе познания системы важнейших понятий, законов и теорий о составе, строении и свойствах химических веществ;
- 5) формирование представлений о значении химических наук в решении проблем рационального природопользования, защиты здоровья людей в условиях быстрого изменения экологического качества окружающей среды;
- 6) освоение приёмов оказания первой помощи, рациональной организации труда и отдыха

В процессе освоения программы курса химии старшей школы учащиеся овладевают умениями ставить вопросы, наблюдение, объяснение классификация, сравнивать, проведение эксперимент и интерпретировать выводы на его основе, определение источники химической информации, получать и анализировать ее, а также готовить на этой основе собственный информационный продукт, презентовать его и ведение дискуссию.

Значительное место в содержании курса отводится химическому эксперименту. Он позволяет сформировать у учащихся специальные Предметные работа с химическими веществами, выполнять простые химические опыты, научить их безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но и контроля качества их сформированности.

По своему усмотрению, а также исходя из возможностей школьного кабинета химии учитель может изменить и структуру представленного в программе практикума, например, увеличить число лабораторных работ за счет сокращения демонстраций..

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

Содержание курса химии в средней позволяет сформировать у учащихся не только познавательные ценности, но и другие компоненты системы ценностей: труда и быта, коммуникативные, нравственные и эстетические.

Курс четко делится на две части: органическую химию $(10\$ класс) и общую химию $(11\$ класс).

В РЕЗУЛЬТАТЕ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ХИМИЯ» НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ:

Выпускник на базовом уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- раскрывать на примерах положения теории химического строения А.М. Бутлерова;
- понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- объяснять причины многообразия веществ на основе общих представлений об их составе и строении;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;
- прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);
- проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков – в составе пищевых продуктов и косметических средств;
- владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- приводить примеры гидролиза солей в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе,
 производственных процессах и жизнедеятельности организмов;
- приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ металлов и неметаллов;
- проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

ВЫПУСКНИК НА БАЗОВОМ УРОВНЕ ПОЛУЧИТ ВОЗМОЖНОСТЬ НАУЧИТЬСЯ:

- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- использовать методы научного познания при выполнении проектов и учебноисследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной – с целью определения химической активности вешеств:
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.
- б) освоение приёмов оказания первой помощи, рациональной организации труда и отдыха

Значительное место в содержании курса отводится химическому эксперименту. Он позволяет сформировать у учащихся специальные Предметные умения работать с химическими веществами, выполнять простые химические опыты, научить их безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но и контроля качества их сформированности. По своему усмотрению, а также исходя из возможностей школьного кабинета химии учитель может изменить и структуру представленного в программе практикума, например, увеличить число лабораторных работ за счет сокращения демонстраций..

II. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

10 класс

ВВЕДЕНИЕ(1ч.)

Наблюдение, предположение, гипотеза. Поиск закономерностей. Научный эксперимент. Вывод.

СТРОЕНИЕ И КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Предмет органической химии. Место и значение органической химии в системе естественных наук. Валентность. Химическое строение. Основные положения теории строения органических соединений. Углеродный скелет органической молекулы. Кратность химической связи. Изомерия и изомеры.

УГЛЕВОДОРОДЫ И ИХ ПРИРОДНЫЕ ИСТОЧНИКИ

А л к а н ы. Природный газ, его состав и применение как источника энергии и химического сырья. Гомологический ряд предельных углеводородов. Изомерия и номенклатура алканов. Метан и этан как представители алканов. Свойства (горение, реакции замещения, пиролиз, дегидрирование). Применение. Крекинг и изомеризация алканов. Алкильные радикалы. Механизм свободнорадикального галогенирования алканов. А л к е н ы. Этилен как представитель алкенов. Получение этилена в промышленности (дегидрирование этана) и в лабора- 12 тории (дегидратация этанола). Свойства (горение, бромирование, гидратация, полимеризация, окисление

раствором КМпО4) и применение этилена. Полиэтилен. Пропилен. Стереорегулярность полимера. Основные понятия химии высокомолекулярных соединений. Реакции полимеризации. Д и е н ы. Бутадиен и изопрен как представители диенов. Реакции присоединения с участием сопряженных диенов (бромирование, полимеризация, гидрогалогенирование, гидрирование). Натуральный и синтетический каучуки. Резина. А л к и н ы. Ацетилен как представитель алкинов. Получение ацетилена карбидным и метановым способами. Получение карбида кальция. Свойства (горение, бромирование, гидратация, тримеризация) и применение ацетилена. А р е н ы. Бензол как представитель аренов. Современные представления о строении бензола. Свойства бензола (горение, нитрование, бромирование) и его применение. Н е ф т ь и с п о с о б ы е е п е р е р а б о т к и. Состав нефти. Переработка нефти: перегонка и крекинг. Риформинг низкосортных нефтепродуктов. Понятие об октановом числе.

КИСЛОРОДСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

С п и р т ы. Метанол и этанол как представители предельных одноатомных спиртов. Свойства этанола (горение, окисление в альдегид, дегидратация). Получение (брожением глюкозы и гидратацией этилена) и применение этанола. Этиленгликоль. Глицерин как еще один представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Ф е н о л. Получение фенола из каменного угля. Каменный уголь и его использование. Коксование каменного угля, важнейшие продукты коксохимического производства. Взаимное влияние атомов в молекуле фенола (взаимодействие с бромной водой и гидроксидом натрия). Получение и применение фенола. А л ь д е г и д ы. Формальдегид и ацетальдегид как представители альдегидов. Понятие о кетонах. Свойства (реакция окисления в кислоту и восстановления в спирт, реакция поликонденсации формальдегида с фенолом). Получение (окислением спиртов) и применение формальдегида И ацетальдегида. Фенолоформальдегидные пластмассы. Термопластичность и термореактивность. К а р б о н о в ы е к и с л о т ы. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Свойства 13 уксусной кислоты (взаимодействие с металлами, оксидами металлов, гидроксидами металлов и солями; реакция этерификации). Применение уксусной кислоты. С л о ж н ы е э ф и р ы и ж и р ы. Сложные эфиры как продукты взаимодействия кислот со спиртами. Значение сложных эфиров в природе и жизни человека. Отдельные представители кислот иного строения: олеиновая, линолевая, линоленовая, акриловая, щавелевая, бензойная. Жиры как сложные эфиры глицерина и жирных карбоновых кислот. Растительные и животные жиры, их состав. Гидролиз или омыление жиров. Мыла . Синтетические моющие средства (СМС). Применение жиров. Замена жиров в технике непищевым сырьем. У г л е в о д ы. Понятие об углеводах. Глюкоза как представитель моносахаридов. Понятие о двойственной функции органического соединения на примере свойств глюкозы как альдегида и многоатомного спирта — альдегидоспирта. Брожение глюкозы. Значение и применение глюкозы. Фруктоза как изомер глюкозы. Сахароза как представитель дисахаридов. Производство сахара. Крахмал и целлюлоза как представители полисахаридов. Сравнение их свойств и биологическая роль. Применение этих полисахаридов. С п и р т ы. Метанол и этанол как представители предельных одноатомных спиртов. Свойства этанола (горение, окисление в альдегид, дегидратация). Получение (брожением глюкозы и гидратацией этилена) и применение этанола. Этиленгликоль. Глицерин как еще один представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Ф е н о л. Получение фенола из каменного угля. Каменный уголь и его использование. Коксование каменного угля, важнейшие продукты коксохимического производства. Взаимное влияние атомов в молекуле фенола (взаимодействие с

бромной водой и гидроксидом натрия). Получение и применение фенола. А л ь д е г и д ы. Формальдегид и ацетальдегид как представители альдегидов. Понятие о кетонах. Свойства (реакция окисления в кислоту и восстановления в спирт, реакция поликонденсации формальдегида с фенолом). Получение (окислением спиртов) и применение формальдегида и ацетальдегида. Фенолоформальдегидные пластмассы. Термопластичность и термореактивность. К а р б о н о в ы е к и с л о т ы. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Свойства 13 уксусной кислоты (взаимодействие с металлами, оксидами металлов, гидроксидами металлов и солями; реакция этерификации). Применение уксусной кислоты. С л о ж н ы е э ф и р ы и ж и р ы. Сложные эфиры как продукты взаимодействия кислот со спиртами. Значение сложных эфиров в природе и жизни человека. Отдельные представители кислот иного строения: олеиновая, линолевая, линоленовая, акриловая, щавелевая, бензойная. Жиры как сложные эфиры глицерина и жирных карбоновых кислот. Растительные и животные жиры, их состав. Гидролиз или омыление жиров. Мыла . Синтетические моющие средства (СМС). Применение жиров. Замена жиров в технике непищевым сырьем. У г л е в о д ы. Понятие об углеводах. Глюкоза как представитель моносахаридов. Понятие о двойственной функции органического соединения на примере свойств глюкозы как альдегида и многоатомного спирта — альдегидоспирта. Брожение глюкозы. Значение и применение глюкозы. Фруктоза как изомер глюкозы. Сахароза как представитель дисахаридов. Производство сахара. Крахмал и целлюлоза как представители полисахаридов. Сравнение их свойств и биологическая роль. Применение этих полисахаридов.

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Амины. Метиламин как представитель алифатических аминов и анилин — как ароматических. Основность аминов в сравнении с основными свойствами аммиака. Анилин и его свойства (взаимодействие с соляной кислотой и бромной водой). Взаимное влияние атомов в молекулах органических соединений на примере анилина. Получение анилина по реакции Н. Н. Зинина. Применение анилина. А м и н о к и с л о т ы. Глицин и аланин как представители природных аминокислот. Свойства аминокислот как амфотерных органических соединений (взаимодействие с щелочами и кислотами). Особенности диссоциации аминокислот в водных растворах. Биполярные ионы. Образование полипептидов. Аминокапроновая кислота как представитель синтетических аминокислот. Понятие о синтетических волокнах на примере капрона. Аминокислоты в природе, их биологическая роль. Незаменимые аминокислоты. 14 Белки. Белки как полипептиды. Структура белковых молекул. Свойства белков (горение, гидролиз, цветные реакции). Биологическая роль белков. Нуклеиновые кислоты. Нуклеиновые кислоты как полинуклеотиды. Строение нуклеотида. РНК и ДНК в сравнении. Их роль в хранении и передаче наследственной информации. Понятие о генной инженерии и биотехнологии. Генетическая связь между классами орга - н и ч е с к и х с о е д и н е н и й. Понятие о генетической связи и генетических рядах.

ангиж и кимих

Пластмассы и волокна. Полимеризация и поликонденсация как способы получения синтетических высокомолекулярных соединений. Получение искусственных высокомолекулярных соединений химической модификацией природных полимеров. Строение полимеров: линейное, пространственное, сетчатое. Понятие о пластмассах. Термопластичные и термореактивные полимеры. Отдельные представители синтетических и искусственных полимеров: фенолоформальдегидные смолы, поливинилхлорид, тефлон, целлулоид. Понятие о химических волокнах. Натуральные, синтетические и искусственные волокна. Классификация и

отдельные представители химических волокон: ацетатное (триацетатный шелк) и вискозное, винилхлоридное (хлорин), полинитрильное (нитрон), полиамидное (капрон, найлон), полиэфирное (лавсан). Фермен ты. Ферменты как биологические катализаторы белковой природы. Понятие о рН среды. Особенности строения и свойств (селективность и эффективность, зависимость действия от температуры и рН среды раствора) ферментов по сравнению с неорганическими катализаторами. Роль ферментов в жизнедеятельности живых организмов и производстве. В и т а м и н ы. Понятие о витаминах. Виды витаминной недостаточности. Классификация витаминов. Витамин С как представитель водорастворимых витаминов и витамин А как представитель жирорастворимых витаминов. Г о р м о н ы. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Важнейшие свойства гормонов: высокая физиологическая активность, дистанционное действие, быстрое разрушение в тканях. Отдельные представители гормонов: 15 инсулин и адреналин. Профилактика сахарного диабета. Понятие о стероидных гормонах на примере половых гормонов. Л е к а р с т в а. Лекарственная химия: от ятрохимии и фармакотерапии до химиотерапии. Антибиотики и дисбактериоз. Наркотические вещества. Наркомания, борьба с ней и профилактика.

Решение задач на вывод формулы органических веществ по продуктам сгорания и массовым долям элементов.

Демонстрации. Плавление, обугливание и горение органических веществ. Модели молекул представителей различных классов органических соединений. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов, каменного угля и продуктов коксохимического производства. Окисление спирта в альдегид. Качественные реакции на многоатомные спирты. Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция «серебряного зеркала» альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоту с помощью гидроксида меди (II). Качественная реакция на крахмал. Коллекция эфирных масел. Коллекция пластмасс и изделий из них. Коллекция искусственных волокон и изделий из них. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательство наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков. Горение птичьего пера и шерстяной нити. Модель молекулы ДНК. Переходы: этанол — этилен этиленгликоль — этиленгликолят меди (II); этанол — этаналь — этановая кислота. Коллекция пластмасс, синтетических волокон и изделий из них. Разложение пероксида водорода каталазой сырого мяса и сырого картофеля. Коллекция СМС, содержащих энзимы. Испытание среды раствора СМС индикаторной бумагой. Коллекция витаминных препаратов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой. Испытание аптечного препарата инсулина на белок

Практическая работа № 1. Решение экспериментальных задач на идентификацию органических соединений. Практическая работа № 2. Распознавание пластмасс и волокон.

РАСПРЕДЕЛЕНИЕ ТЕМ КУРСА ХИМИИ 10 КЛАСС.

10 класс			
Обязательная часть (80%)	Колич ество часов	Часть, формируемая участниками образовательного	Контрольные работы

		процесса (20%)	
ВВЕДЕНИЕ(1ч.)	1	Лабораторных исследований - 0	-
ТЕМА 1. СТРОЕНИЕ И КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ (4ч.)		Лабораторных исследований -2	-
ТЕМА 2. УГЛЕВОДОРОДЫ (17ч.)	14	Лабораторных исследований -3	Контрольная работа № 1 по теме «Углеводороды»
ТЕМА 3. КИСЛОРОДСОДЕРЖАЩИЕ СОЕДИНЕНИЯ (14ч.)	10	Лабораторных исследований -4	-
ТЕМА4. АЗОТСОДЕРЖАЩИЕ СОЕДИНЕНИЯ (12ч.)	10	Лабораторных исследований - 1;Практических работ-1	Контрольная работа № 2 по теме «Кислород и азотсодержащие органические вещества»
ТЕМА 5. ХИМИЯ И ЖИЗНЬ (10ч.)	5	Лабораторных исследований -1; Практических работ-1	
ПОВТОРЕНИЕ (10ч.)	10		
Всего уроков-55 (80%)		Практических исследований, экспери ментов-13 (20%)	Контрольных работ -2

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575913 Владелец Кокоткина Виктория Владимировна

Действителен С 26.02.2021 по 26.02.2022